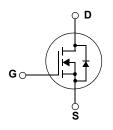


January 2006 QFET ®

FQN1N50C 500V N-Channel MOSFET

Features


- 0.38 A, 500 V, $R_{DS(on)}$ = 6.0 Ω @ V_{GS} = 10 V
- Low gate charge (typical 4.9 nC)
- Low Crss (typical 4.1 pF)
- · Fast switching
- 100 % avalanche tested
- · Improved dv/dt capability

Description

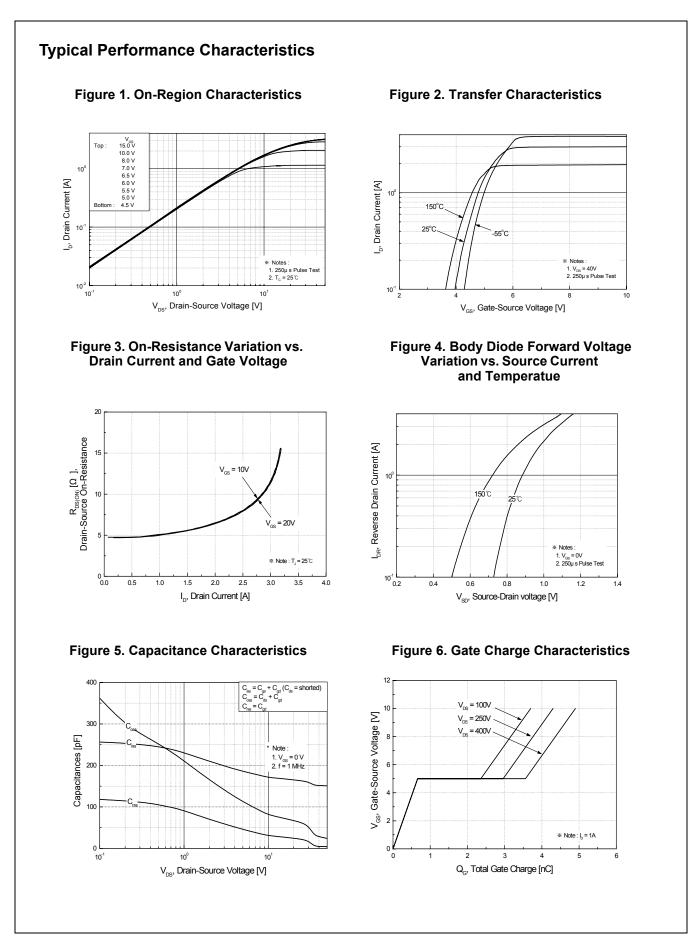
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

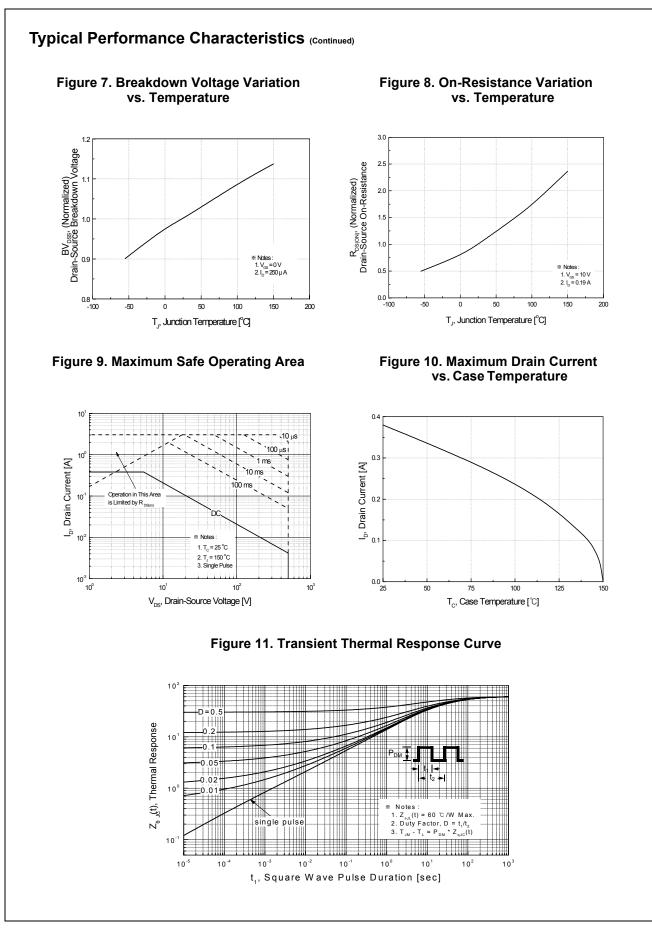
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology.

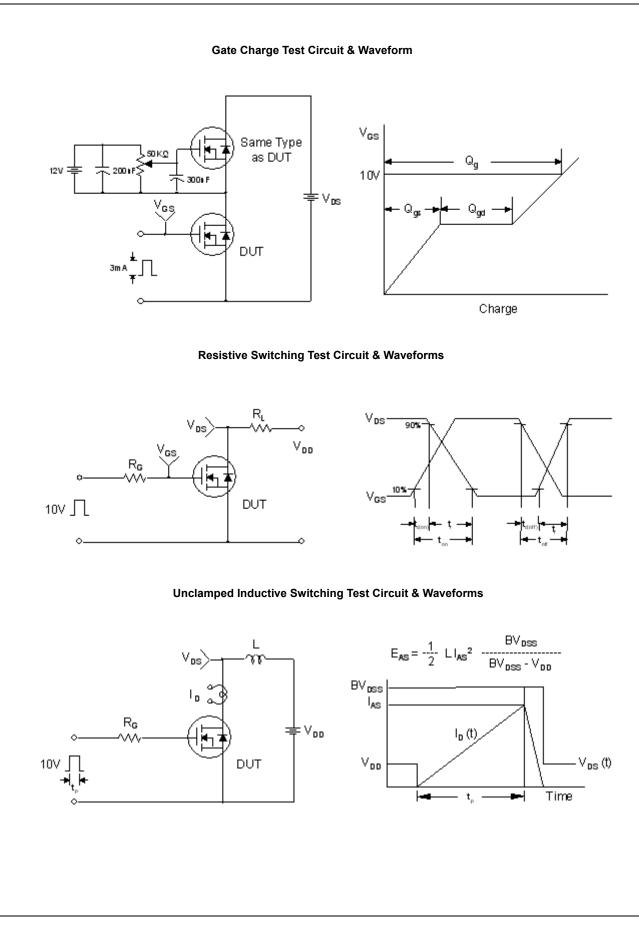
Absolute Maximum Ratings

Symbol		Parameter		FQN1N50C	Units	
V _{DSS}	Drain-Source Voltage		500	V		
I _D	Drain Current	- Continuous (T _C = 28	5°C)	0.38	A	
		- Continuous (T _C = 10	00°C)	0.24	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	3.04	A	
V _{GSS}	Gate-Source Voltage			±30	V	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	44.4	mJ	
I _{AR}	Avalanche Current		(Note 1)	0.38	A	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	0.21	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns	
P _D	Power Dissipati	on (T _A = 25°C)		0.89	W	
	Power Dissipati	on (T _L = 25°C)		2.08	W	
		- Derate above 25°C		0.017	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds			300	°C	

Thermal Characteristics

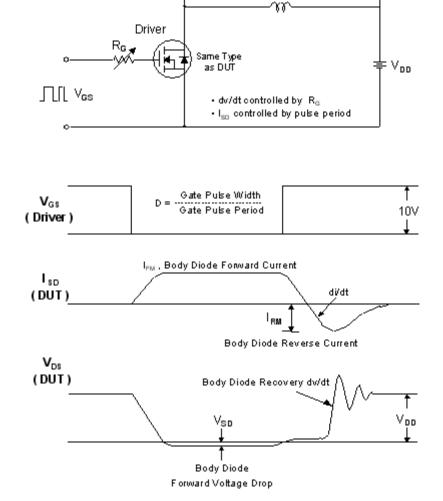

Symbol	Parameter		Тур	Max	Units
$R_{ ext{ heta}JL}$	Thermal Resistance, Junction-to-Lead	(Note 6a)		60	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient	(Note 6b)		140	°C/W

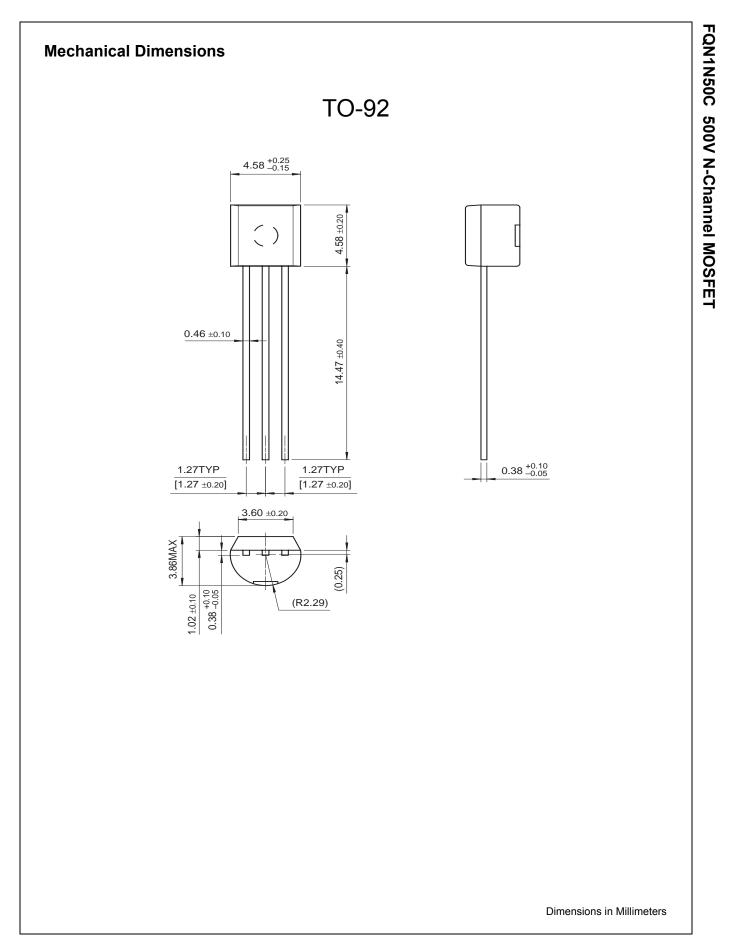

Device Marking Device 1N50C FQN1N50C		Device Pac		PackageReel SizeTO-92		Tape Width		Quantity		
		TO-						2000ea		
Electrica	l Char	acteristics T _c	= 25°C unless	otherwise note	d					
Symbol	Parameter			Test Conditions			Min.	Тур.	Max.	Units
Off Characte	ristics									
BV _{DSS}	Drain-Source Breakdown Voltage			V _{GS} = 0 V,	I _D = 250 μA		500			V
∆BV _{DSS} / ∆T _J	Breakdown Voltage Temperature Coefficient			I _D = 250 μ/	A, Referenced t	o 25°C		0.5		V/°C
DSS	Zero Ga	te Voltage Drain Curre	nt	V _{DS} = 500	V, V _{GS} = 0 V				50	μA
				V _{DS} = 400	V, T _C = 125°C				250	μA
I _{GSSF}	Gate-Body Leakage Current, Forward			V _{GS} = 30 \	/, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse		Reverse	V _{GS} = -30	V, V _{DS} = 0 V				-100	nA
On Characte	ristics									
V _{GS(th)}	Gate Threshold Voltage			$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$			2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance			V _{GS} = 10 V, I _D = 0.19 A				4.6	6.0	Ω
9 _{FS}	Forward Transconductance			$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 0.19 \text{A}$ (Note 4)				0.6		S
Dynamic Cha	aracteristi	cs								
C _{iss}	Input Ca	Input Capacitance		$V_{DS} = 25 V, V_{GS} = 0 V,$			150	195	pF	
C _{oss}	Output (Capacitance		f = 1.0 MHz			28	40	pF	
C _{rss}	Reverse	e Transfer Capacitance						4.1		pF
Switching Cl	aracteris	tics								
t _{d(on)}	Turn-Or	Delay Time		V _{DD} = 250	V, I _D = 1.0 A,			10	30	ns
t _r	Turn-Or	Rise Time		$R_{G} = 25 \Omega$		-		10	30	ns
t _{d(off)}	Turn-Of	f Delay Time				-		20	50	ns
t _f	Turn-Of	f Fall Time				(Note 4, 5)		15	40	ns
Qg	Total Ga	te Charge		V _{DS} = 400	V, I _D = 1.0 A,			4.9	6.4	nC
Q _{gs}	Gate-Sc	ource Charge		V _{GS} = 10 \	/	-		0.66		nC
Q _{gd}	Gate-Dr	ain Charge		(Note 4, 5)				2.9		nC
Drain-Source	Diode Cl	naracteristics and Ma	ximum Rat	inas						•
I _S	1	m Continuous Drain-So		•	urrent				0.38	А
I _{SM}		m Pulsed Drain-Source							3.04	А
V _{SD}	Drain-Se	ource Diode Forward V	/oltage	V _{GS} = 0 V,	I _S = 0.38 A				1.4	V
t _{rr}		e Recovery Time	-	V _{GS} = 0 V,	-			188		ns
Q _{rr}	Reverse	Recovery Charge			/ dt = 100 A/μs	(Note 4)		0.55		μC
				<u> </u>					I	I


3. I_{SD} < 0.38A, di/dt < 200A/µs, V_{DD} < BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width < 300µs, Duty cycle < 2% 5. Essentially independent of operating temperature

2

 6. a) Reference point of the R_{0,JL} is the drain lead
b) When mounted on 3"x4.5" FR-4 PCB without any pad copper in a still air environment (R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance. R_{0CA} is determined by the user's board design)





FQN1N50C 500V N-Channel MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

L

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™]	FAST [®] FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I ² C™ <i>i-Lo</i> ™ ImpliedDisconnect™	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TCM [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UltraFET [®] UniFET [™]
EnSigna™ FACT™ FACT Quiet Serie	ImpliedDisconnect [™] IntelliMAX [™] es [™] I. Around the world. [™]	OCXPro™ OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	ScalarPump [™] SILENT SWITCHER [®] SMART START [™] SPM [™]	UniFET™ VCX™ Wire™
The Power Fran Programmable A	chise [®]	POP™ Power247™ PowerEdge™	Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 118

Home >> Find products >>

FQN1N50C 500V N-Channel MOSFET

Contents

•<u>General description</u> •<u>Features</u> •<u>Product status/pricing/packaging</u> •Order Samples

General description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

Qualification Support

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology.

back to top

Features

- 0.38 A, 500 V, R_{DS(on)} = 6.0 Ω @ V_{GS} = 10 V
- Low gate charge (typical 4.9 nC)
- Low Crss (typical 4.1 pF)
- Fast switching
- 100 % avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

ing BUY

Related Links

Request samples

- How to order products
- .
- Product Change Notices (PCNs)

<u>1. 01107</u>

<u>Support</u>

- Sales support

Quality and reliability

Design center

This page Print version

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**

FQN1N50CBU	Full Production	Full Production	\$0.316	<u>TO-92</u>	3	BULK	<u>Line 1:</u> 1N50C <u>Line 2:</u> &3
FQN1N50CTA	Full Production	Full Production	\$0.316	<u>TO-92</u>	3	AMMO	Line 1: 1N50C Line 2: &3

* Fairchild 1,000 piece Budgetary Pricing
** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Ø Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FQN1N50C is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product	
FQN1N50CBU	
FQN1N50CTA	

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (